ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.13307
  4. Cited By
Deep Learning-Driven State Correction: A Hybrid Architecture for
  Radar-Based Dynamic Occupancy Grid Mapping

Deep Learning-Driven State Correction: A Hybrid Architecture for Radar-Based Dynamic Occupancy Grid Mapping

22 May 2024
M. Ronecker
Xavier Diaz
Michael Karner
Daniel Watzenig
ArXivPDFHTML

Papers citing "Deep Learning-Driven State Correction: A Hybrid Architecture for Radar-Based Dynamic Occupancy Grid Mapping"

5 / 5 papers shown
Title
SpINR: Neural Volumetric Reconstruction for FMCW Radars
SpINR: Neural Volumetric Reconstruction for FMCW Radars
Harshvardhan Takawale
Nirupam Roy
30
0
0
30 Mar 2025
Dynamic Occupancy Grids for Object Detection: A Radar-Centric Approach
Dynamic Occupancy Grids for Object Detection: A Radar-Centric Approach
M. Ronecker
Markus Schratter
Lukas Kuschnig
Daniel Watzenig
24
1
0
02 Feb 2024
NVRadarNet: Real-Time Radar Obstacle and Free Space Detection for
  Autonomous Driving
NVRadarNet: Real-Time Radar Obstacle and Free Space Detection for Autonomous Driving
A. Popov
Patrik Gebhardt
Ke Chen
Ryan Oldja
Heeseok Lee
S. Murray
Ruchita Bhargava
Nikolai Smolyanskiy
41
25
0
29 Sep 2022
A Random Finite Set Approach for Dynamic Occupancy Grid Maps with
  Real-Time Application
A Random Finite Set Approach for Dynamic Occupancy Grid Maps with Real-Time Application
Dominik Nuss
Stephan Reuter
Markus Thom
Ting Yuan
Gunther Krehl
M. Maile
Axel Gern
Klaus C. J. Dietmayer
61
148
0
09 May 2016
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image
  Segmentation
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
Vijay Badrinarayanan
Alex Kendall
R. Cipolla
SSeg
429
15,595
0
02 Nov 2015
1