Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2405.14106
Cited By
Nearly Tight Black-Box Auditing of Differentially Private Machine Learning
23 May 2024
Meenatchi Sundaram Muthu Selva Annamalai
Emiliano De Cristofaro
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Nearly Tight Black-Box Auditing of Differentially Private Machine Learning"
12 / 12 papers shown
Title
DPImageBench: A Unified Benchmark for Differentially Private Image Synthesis
Chen Gong
Kecen Li
Zinan Lin
Tianhao Wang
61
3
0
18 Mar 2025
Empirical Privacy Variance
Yuzheng Hu
Fan Wu
Ruicheng Xian
Yuhang Liu
Lydia Zakynthinou
Pritish Kamath
Chiyuan Zhang
David A. Forsyth
62
0
0
16 Mar 2025
Sublinear Algorithms for Wasserstein and Total Variation Distances: Applications to Fairness and Privacy Auditing
Debabrota Basu
Debarshi Chanda
41
0
0
10 Mar 2025
Privacy Auditing of Large Language Models
Ashwinee Panda
Xinyu Tang
Milad Nasr
Christopher A. Choquette-Choo
Prateek Mittal
PILM
62
5
0
09 Mar 2025
General-Purpose
f
f
f
-DP Estimation and Auditing in a Black-Box Setting
Önder Askin
Holger Dette
Martin Dunsche
T. Kutta
Yun Lu
Yu Wei
Vassilis Zikas
52
0
0
10 Feb 2025
Adversarial Sample-Based Approach for Tighter Privacy Auditing in Final Model-Only Scenarios
Sangyeon Yoon
Wonje Jeung
Albert No
85
0
0
02 Dec 2024
The Last Iterate Advantage: Empirical Auditing and Principled Heuristic Analysis of Differentially Private SGD
Thomas Steinke
Milad Nasr
Arun Ganesh
Borja Balle
Christopher A. Choquette-Choo
Matthew Jagielski
Jamie Hayes
Abhradeep Thakurta
Adam Smith
Andreas Terzis
28
7
0
08 Oct 2024
It's Our Loss: No Privacy Amplification for Hidden State DP-SGD With Non-Convex Loss
Meenatchi Sundaram Muthu Selva Annamalai
31
8
0
09 Jul 2024
Tighter Privacy Auditing of DP-SGD in the Hidden State Threat Model
Tudor Cebere
A. Bellet
Nicolas Papernot
30
9
0
23 May 2024
Not all noise is accounted equally: How differentially private learning benefits from large sampling rates
Friedrich Dörmann
Osvald Frisk
L. Andersen
Christian Fischer Pedersen
FedML
54
25
0
12 Oct 2021
Opacus: User-Friendly Differential Privacy Library in PyTorch
Ashkan Yousefpour
I. Shilov
Alexandre Sablayrolles
Davide Testuggine
Karthik Prasad
...
Sayan Gosh
Akash Bharadwaj
Jessica Zhao
Graham Cormode
Ilya Mironov
VLM
152
349
0
25 Sep 2021
Tempered Sigmoid Activations for Deep Learning with Differential Privacy
Nicolas Papernot
Abhradeep Thakurta
Shuang Song
Steve Chien
Ulfar Erlingsson
AAML
139
178
0
28 Jul 2020
1