ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.14519
  4. Cited By
A New Formulation for Zeroth-Order Optimization of Adversarial EXEmples
  in Malware Detection

A New Formulation for Zeroth-Order Optimization of Adversarial EXEmples in Malware Detection

23 May 2024
Marco Rando
Luca Demetrio
Lorenzo Rosasco
Fabio Roli
    AAML
ArXivPDFHTML

Papers citing "A New Formulation for Zeroth-Order Optimization of Adversarial EXEmples in Malware Detection"

3 / 3 papers shown
Title
Gradient-Free Methods for Deterministic and Stochastic Nonsmooth
  Nonconvex Optimization
Gradient-Free Methods for Deterministic and Stochastic Nonsmooth Nonconvex Optimization
Tianyi Lin
Zeyu Zheng
Michael I. Jordan
49
51
0
12 Sep 2022
secml-malware: Pentesting Windows Malware Classifiers with Adversarial
  EXEmples in Python
secml-malware: Pentesting Windows Malware Classifiers with Adversarial EXEmples in Python
Luca Demetrio
Battista Biggio
AAML
35
11
0
26 Apr 2021
RobustBench: a standardized adversarial robustness benchmark
RobustBench: a standardized adversarial robustness benchmark
Francesco Croce
Maksym Andriushchenko
Vikash Sehwag
Edoardo Debenedetti
Nicolas Flammarion
M. Chiang
Prateek Mittal
Matthias Hein
VLM
219
676
0
19 Oct 2020
1