ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.14532
  4. Cited By
Aligning Embeddings and Geometric Random Graphs: Informational Results
  and Computational Approaches for the Procrustes-Wasserstein Problem

Aligning Embeddings and Geometric Random Graphs: Informational Results and Computational Approaches for the Procrustes-Wasserstein Problem

23 May 2024
Mathieu Even
Luca Ganassali
Jakob Maier
Laurent Massoulié
ArXivPDFHTML

Papers citing "Aligning Embeddings and Geometric Random Graphs: Informational Results and Computational Approaches for the Procrustes-Wasserstein Problem"

3 / 3 papers shown
Title
The feasibility of multi-graph alignment: a Bayesian approach
Louis Vassaux
Laurent Massoulié
42
1
0
24 Feb 2025
Random Graph Matching in Geometric Models: the Case of Complete Graphs
Random Graph Matching in Geometric Models: the Case of Complete Graphs
Haoyu Wang
Yihong Wu
Jiaming Xu
Israel Yolou
34
27
0
22 Feb 2022
Word Translation Without Parallel Data
Word Translation Without Parallel Data
Alexis Conneau
Guillaume Lample
MarcÁurelio Ranzato
Ludovic Denoyer
Hervé Jégou
169
1,635
0
11 Oct 2017
1