Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2405.15979
Cited By
BadGD: A unified data-centric framework to identify gradient descent vulnerabilities
24 May 2024
ChiHua Wang
Guang Cheng
SILM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"BadGD: A unified data-centric framework to identify gradient descent vulnerabilities"
4 / 4 papers shown
Title
Quantifying and Mitigating Privacy Risks for Tabular Generative Models
Chaoyi Zhu
Jiayi Tang
Hans Brouwer
Juan F. Pérez
Marten van Dijk
Lydia Y. Chen
55
5
0
12 Mar 2024
Private Gradient Descent for Linear Regression: Tighter Error Bounds and Instance-Specific Uncertainty Estimation
Gavin Brown
Krishnamurthy Dvijotham
Georgina Evans
Daogao Liu
Adam D. Smith
Abhradeep Thakurta
34
3
0
21 Feb 2024
RQP-SGD: Differential Private Machine Learning through Noisy SGD and Randomized Quantization
Ce Feng
Parv Venkitasubramaniam
19
1
0
09 Feb 2024
Revisiting Gradient Clipping: Stochastic bias and tight convergence guarantees
Anastasia Koloskova
Hadrien Hendrikx
Sebastian U. Stich
99
48
0
02 May 2023
1