ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.15979
  4. Cited By
BadGD: A unified data-centric framework to identify gradient descent
  vulnerabilities

BadGD: A unified data-centric framework to identify gradient descent vulnerabilities

24 May 2024
ChiHua Wang
Guang Cheng
    SILM
ArXivPDFHTML

Papers citing "BadGD: A unified data-centric framework to identify gradient descent vulnerabilities"

4 / 4 papers shown
Title
Quantifying and Mitigating Privacy Risks for Tabular Generative Models
Quantifying and Mitigating Privacy Risks for Tabular Generative Models
Chaoyi Zhu
Jiayi Tang
Hans Brouwer
Juan F. Pérez
Marten van Dijk
Lydia Y. Chen
55
5
0
12 Mar 2024
Private Gradient Descent for Linear Regression: Tighter Error Bounds and
  Instance-Specific Uncertainty Estimation
Private Gradient Descent for Linear Regression: Tighter Error Bounds and Instance-Specific Uncertainty Estimation
Gavin Brown
Krishnamurthy Dvijotham
Georgina Evans
Daogao Liu
Adam D. Smith
Abhradeep Thakurta
34
3
0
21 Feb 2024
RQP-SGD: Differential Private Machine Learning through Noisy SGD and
  Randomized Quantization
RQP-SGD: Differential Private Machine Learning through Noisy SGD and Randomized Quantization
Ce Feng
Parv Venkitasubramaniam
19
1
0
09 Feb 2024
Revisiting Gradient Clipping: Stochastic bias and tight convergence
  guarantees
Revisiting Gradient Clipping: Stochastic bias and tight convergence guarantees
Anastasia Koloskova
Hadrien Hendrikx
Sebastian U. Stich
99
48
0
02 May 2023
1