ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.16419
  4. Cited By
Enhancing Feature Diversity Boosts Channel-Adaptive Vision Transformers

Enhancing Feature Diversity Boosts Channel-Adaptive Vision Transformers

26 May 2024
Chau Pham
Bryan A. Plummer
ArXivPDFHTML

Papers citing "Enhancing Feature Diversity Boosts Channel-Adaptive Vision Transformers"

10 / 10 papers shown
Title
ChA-MAEViT: Unifying Channel-Aware Masked Autoencoders and Multi-Channel Vision Transformers for Improved Cross-Channel Learning
ChA-MAEViT: Unifying Channel-Aware Masked Autoencoders and Multi-Channel Vision Transformers for Improved Cross-Channel Learning
Chau Pham
Juan C. Caicedo
Bryan A. Plummer
42
0
0
25 Mar 2025
Isolated Channel Vision Transformers: From Single-Channel Pretraining to Multi-Channel Finetuning
Wenyi Lian
Joakim Lindblad
Patrick Micke
Natasa Sladoje
57
0
0
12 Mar 2025
Revisiting Disentanglement in Downstream Tasks: A Study on Its Necessity
  for Abstract Visual Reasoning
Revisiting Disentanglement in Downstream Tasks: A Study on Its Necessity for Abstract Visual Reasoning
Ruiqian Nai
Zixin Wen
Ji Li
Yuanzhi Li
Yang Gao
31
2
0
01 Mar 2024
Leveraging Relational Information for Learning Weakly Disentangled
  Representations
Leveraging Relational Information for Learning Weakly Disentangled Representations
Andrea Valenti
D. Bacciu
CoGe
DRL
22
5
0
20 May 2022
Masked Autoencoders Are Scalable Vision Learners
Masked Autoencoders Are Scalable Vision Learners
Kaiming He
Xinlei Chen
Saining Xie
Yanghao Li
Piotr Dollár
Ross B. Girshick
ViT
TPM
263
7,434
0
11 Nov 2021
RGB-D Saliency Detection via Cascaded Mutual Information Minimization
RGB-D Saliency Detection via Cascaded Mutual Information Minimization
Jing Zhang
Deng-Ping Fan
Yuchao Dai
Xin Yu
Yiran Zhong
Nick Barnes
Ling Shao
49
95
0
15 Sep 2021
Unsupervised Disentanglement without Autoencoding: Pitfalls and Future
  Directions
Unsupervised Disentanglement without Autoencoding: Pitfalls and Future Directions
Andrea Burns
Aaron Sarna
Dilip Krishnan
Aaron Maschinot
CoGe
DRL
SSL
25
4
0
14 Aug 2021
Weakly-Supervised Disentanglement Without Compromises
Weakly-Supervised Disentanglement Without Compromises
Francesco Locatello
Ben Poole
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
Michael Tschannen
CoGe
OOD
DRL
173
313
0
07 Feb 2020
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
  Applications
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
Andrew G. Howard
Menglong Zhu
Bo Chen
Dmitry Kalenichenko
Weijun Wang
Tobias Weyand
M. Andreetto
Hartwig Adam
3DH
948
20,549
0
17 Apr 2017
Aggregated Residual Transformations for Deep Neural Networks
Aggregated Residual Transformations for Deep Neural Networks
Saining Xie
Ross B. Girshick
Piotr Dollár
Z. Tu
Kaiming He
273
10,214
0
16 Nov 2016
1