ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.16528
  4. Cited By
LoQT: Low Rank Adapters for Quantized Training

LoQT: Low Rank Adapters for Quantized Training

26 May 2024
Sebastian Loeschcke
M. Toftrup
M. Kastoryano
Serge J. Belongie
Vésteinn Snæbjarnarson
    MQ
ArXivPDFHTML

Papers citing "LoQT: Low Rank Adapters for Quantized Training"

4 / 4 papers shown
Title
Extreme Compression of Large Language Models via Additive Quantization
Extreme Compression of Large Language Models via Additive Quantization
Vage Egiazarian
Andrei Panferov
Denis Kuznedelev
Elias Frantar
Artem Babenko
Dan Alistarh
MQ
98
87
0
11 Jan 2024
Towards Efficient Post-training Quantization of Pre-trained Language
  Models
Towards Efficient Post-training Quantization of Pre-trained Language Models
Haoli Bai
Lu Hou
Lifeng Shang
Xin Jiang
Irwin King
M. Lyu
MQ
50
47
0
30 Sep 2021
Q-BERT: Hessian Based Ultra Low Precision Quantization of BERT
Q-BERT: Hessian Based Ultra Low Precision Quantization of BERT
Sheng Shen
Zhen Dong
Jiayu Ye
Linjian Ma
Z. Yao
A. Gholami
Michael W. Mahoney
Kurt Keutzer
MQ
217
571
0
12 Sep 2019
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language
  Understanding
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding
Alex Jinpeng Wang
Amanpreet Singh
Julian Michael
Felix Hill
Omer Levy
Samuel R. Bowman
ELM
294
6,927
0
20 Apr 2018
1