ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.17066
  4. Cited By
Saturn: Sample-efficient Generative Molecular Design using Memory
  Manipulation

Saturn: Sample-efficient Generative Molecular Design using Memory Manipulation

27 May 2024
Jeff Guo
Philippe Schwaller
    Mamba
ArXivPDFHTML

Papers citing "Saturn: Sample-efficient Generative Molecular Design using Memory Manipulation"

9 / 9 papers shown
Title
Pretraining Generative Flow Networks with Inexpensive Rewards for Molecular Graph Generation
Pretraining Generative Flow Networks with Inexpensive Rewards for Molecular Graph Generation
Mohit Pandey
G. Subbaraj
Artem Cherkasov
Martin Ester
Emmanuel Bengio
AI4CE
57
1
0
08 Mar 2025
GraphXForm: Graph transformer for computer-aided molecular design
GraphXForm: Graph transformer for computer-aided molecular design
Jonathan Pirnay
Jan G. Rittig
Alexander B. Wolf
Martin Grohe
Jakob Burger
Alexander Mitsos
D. G. Grimm
AI4CE
49
1
0
03 Nov 2024
MFBind: a Multi-Fidelity Approach for Evaluating Drug Compounds in
  Practical Generative Modeling
MFBind: a Multi-Fidelity Approach for Evaluating Drug Compounds in Practical Generative Modeling
Peter Eckmann
D. Wu
G. Heinzelmann
Michael K. Gilson
Rose Yu
AI4CE
21
4
0
16 Feb 2024
Faster and more diverse de novo molecular optimization with double-loop
  reinforcement learning using augmented SMILES
Faster and more diverse de novo molecular optimization with double-loop reinforcement learning using augmented SMILES
E. Bjerrum
Christian Margreitter
Thomas Blaschke
Raquel Lopez-Rios de Castro
19
11
0
22 Oct 2022
Keeping it Simple: Language Models can learn Complex Molecular
  Distributions
Keeping it Simple: Language Models can learn Complex Molecular Distributions
Daniel Flam-Shepherd
Kevin Zhu
A. Aspuru‐Guzik
122
142
0
06 Dec 2021
GraphDF: A Discrete Flow Model for Molecular Graph Generation
GraphDF: A Discrete Flow Model for Molecular Graph Generation
Youzhi Luo
Keqiang Yan
Shuiwang Ji
DRL
157
185
0
01 Feb 2021
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation
  Models
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models
Daniil Polykovskiy
Alexander Zhebrak
Benjamín Sánchez-Lengeling
Sergey Golovanov
Oktai Tatanov
...
Simon Johansson
Hongming Chen
Sergey I. Nikolenko
Alán Aspuru-Guzik
Alex Zhavoronkov
ELM
167
628
0
29 Nov 2018
Graph Convolutional Policy Network for Goal-Directed Molecular Graph
  Generation
Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation
Jiaxuan You
Bowen Liu
Rex Ying
Vijay S. Pande
J. Leskovec
GNN
181
878
0
07 Jun 2018
Junction Tree Variational Autoencoder for Molecular Graph Generation
Junction Tree Variational Autoencoder for Molecular Graph Generation
Wengong Jin
Regina Barzilay
Tommi Jaakkola
208
1,329
0
12 Feb 2018
1