ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.17141
  4. Cited By
MVMS-RCN: A Dual-Domain Unfolding CT Reconstruction with
  Multi-sparse-view and Multi-scale Refinement-correction

MVMS-RCN: A Dual-Domain Unfolding CT Reconstruction with Multi-sparse-view and Multi-scale Refinement-correction

27 May 2024
Xiaohong Fan
Ke-long Chen
Huaming Yi
Yin Yang
Jianping Zhang
ArXivPDFHTML

Papers citing "MVMS-RCN: A Dual-Domain Unfolding CT Reconstruction with Multi-sparse-view and Multi-scale Refinement-correction"

4 / 4 papers shown
Title
WNet: A data-driven dual-domain denoising model for sparse-view computed
  tomography with a trainable reconstruction layer
WNet: A data-driven dual-domain denoising model for sparse-view computed tomography with a trainable reconstruction layer
Theodor Cheslerean-Boghiu
Felix C. Hofmann
M. Schultheiss
F. Pfeiffer
Daniela Pfeiffer
Tobias Lasser
MedIm
OOD
20
23
0
01 Jul 2022
Deep Geometric Distillation Network for Compressive Sensing MRI
Deep Geometric Distillation Network for Compressive Sensing MRI
Xiaohong Fan
Yin Yang
Jianping Zhang
29
10
0
11 Jul 2021
Densely Connected Convolutional Networks
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
L. V. D. van der Maaten
Kilian Q. Weinberger
PINN
3DV
244
35,884
0
25 Aug 2016
U-Net: Convolutional Networks for Biomedical Image Segmentation
U-Net: Convolutional Networks for Biomedical Image Segmentation
Olaf Ronneberger
Philipp Fischer
Thomas Brox
SSeg
3DV
229
74,467
0
18 May 2015
1