Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2405.20469
Cited By
Is Synthetic Data all We Need? Benchmarking the Robustness of Models Trained with Synthetic Images
30 May 2024
Krishnakant Singh
Thanush Navaratnam
Jannik Holmer
Simone Schaub-Meyer
Stefan Roth
DiffM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Is Synthetic Data all We Need? Benchmarking the Robustness of Models Trained with Synthetic Images"
6 / 6 papers shown
Title
Ctrl-GenAug: Controllable Generative Augmentation for Medical Sequence Classification
Xinrui Zhou
Yuhao Huang
Haoran Dou
Shijing Chen
Ao Chang
...
Jie Jessie Ren
Ruobing Huang
Jun Cheng
Wufeng Xue
Dong Ni
MedIm
84
0
0
25 Sep 2024
SynthCLIP: Are We Ready for a Fully Synthetic CLIP Training?
Hasan Hammoud
Hani Itani
Fabio Pizzati
Philip H. S. Torr
Adel Bibi
Bernard Ghanem
CLIP
VLM
112
35
0
02 Feb 2024
BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models
Junnan Li
Dongxu Li
Silvio Savarese
Steven C. H. Hoi
VLM
MLLM
259
4,223
0
30 Jan 2023
Masked Autoencoders Are Scalable Vision Learners
Kaiming He
Xinlei Chen
Saining Xie
Yanghao Li
Piotr Dollár
Ross B. Girshick
ViT
TPM
258
7,412
0
11 Nov 2021
Emerging Properties in Self-Supervised Vision Transformers
Mathilde Caron
Hugo Touvron
Ishan Misra
Hervé Jégou
Julien Mairal
Piotr Bojanowski
Armand Joulin
292
5,761
0
29 Apr 2021
Scaling Laws for Neural Language Models
Jared Kaplan
Sam McCandlish
T. Henighan
Tom B. Brown
B. Chess
R. Child
Scott Gray
Alec Radford
Jeff Wu
Dario Amodei
226
4,424
0
23 Jan 2020
1