ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.20672
  4. Cited By
Investigating and unmasking feature-level vulnerabilities of CNNs to
  adversarial perturbations

Investigating and unmasking feature-level vulnerabilities of CNNs to adversarial perturbations

31 May 2024
Davide Coppola
Hwee Kuan Lee
    AAML
ArXivPDFHTML

Papers citing "Investigating and unmasking feature-level vulnerabilities of CNNs to adversarial perturbations"

1 / 1 papers shown
Title
Exploring Architectural Ingredients of Adversarially Robust Deep Neural
  Networks
Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks
Hanxun Huang
Yisen Wang
S. Erfani
Quanquan Gu
James Bailey
Xingjun Ma
AAML
TPM
44
100
0
07 Oct 2021
1