ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.20876
  4. Cited By
Investigating Calibration and Corruption Robustness of Post-hoc Pruned
  Perception CNNs: An Image Classification Benchmark Study

Investigating Calibration and Corruption Robustness of Post-hoc Pruned Perception CNNs: An Image Classification Benchmark Study

31 May 2024
Pallavi Mitra
Gesina Schwalbe
Nadja Klein
    AAML
ArXivPDFHTML

Papers citing "Investigating Calibration and Corruption Robustness of Post-hoc Pruned Perception CNNs: An Image Classification Benchmark Study"

5 / 5 papers shown
Title
Layer Pruning with Consensus: A Triple-Win Solution
Layer Pruning with Consensus: A Triple-Win Solution
Leandro Giusti Mugnaini
Carolina Tavares Duarte
Anna H. Reali Costa
Artur Jordao
66
0
0
21 Nov 2024
A Comprehensive Survey on Model Quantization for Deep Neural Networks in
  Image Classification
A Comprehensive Survey on Model Quantization for Deep Neural Networks in Image Classification
Babak Rokh
A. Azarpeyvand
Alireza Khanteymoori
MQ
30
82
0
14 May 2022
Generalized Out-of-Distribution Detection: A Survey
Generalized Out-of-Distribution Detection: A Survey
Jingkang Yang
Kaiyang Zhou
Yixuan Li
Ziwei Liu
171
873
0
21 Oct 2021
Sparse Deep Learning: A New Framework Immune to Local Traps and
  Miscalibration
Sparse Deep Learning: A New Framework Immune to Local Traps and Miscalibration
Y. Sun
Wenjun Xiong
F. Liang
40
8
0
01 Oct 2021
Pruning and Quantization for Deep Neural Network Acceleration: A Survey
Pruning and Quantization for Deep Neural Network Acceleration: A Survey
Tailin Liang
C. Glossner
Lei Wang
Shaobo Shi
Xiaotong Zhang
MQ
124
669
0
24 Jan 2021
1