Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2406.00488
Cited By
Federated Model Heterogeneous Matryoshka Representation Learning
1 June 2024
Liping Yi
Han Yu
Chao Ren
Gang Wang
Xiaoguang Liu
Xiaoxiao Li
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Federated Model Heterogeneous Matryoshka Representation Learning"
11 / 11 papers shown
Title
Federated Deconfounding and Debiasing Learning for Out-of-Distribution Generalization
Zhuang Qi
Sijin Zhou
Lei Meng
Han Hu
Han Yu
Xiangxu Meng
FedML
CML
81
0
0
08 May 2025
Towards Initialization-Agnostic Clustering with Iterative Adaptive Resonance Theory
Xiaozheng Qu
Z. Li
Zhuang Qi
Xiang Li
Haibei Huang
Lei Meng
Xiangxu Meng
56
0
0
07 May 2025
Federated Out-of-Distribution Generalization: A Causal Augmentation View
Runhui Zhang
Sijin Zhou
Zhuang Qi
OOD
FedML
73
1
0
28 Apr 2025
FedSKD: Aggregation-free Model-heterogeneous Federated Learning using Multi-dimensional Similarity Knowledge Distillation
Ziqiao Weng
Weidong (Tom) Cai
Bo Zhou
51
0
0
23 Mar 2025
Enhancing Visual Representation with Textual Semantics: Textual Semantics-Powered Prototypes for Heterogeneous Federated Learning
Xinghao Wu
Jianwei Niu
Xuefeng Liu
Guogang Zhu
Jiayuan Zhang
Shaojie Tang
53
0
0
16 Mar 2025
Can Textual Gradient Work in Federated Learning?
Minghui Chen
Ruinan Jin
Wenlong Deng
Yuanyuan Chen
Zhi Huang
Han Yu
Xiaoxiao Li
FedML
79
2
0
27 Feb 2025
Adaptive Guidance for Local Training in Heterogeneous Federated Learning
Jianqing Zhang
Yang Janet Liu
Yang Hua
Jian Cao
Qiang Yang
FedML
30
0
0
09 Oct 2024
pFedAFM: Adaptive Feature Mixture for Batch-Level Personalization in Heterogeneous Federated Learning
Liping Yi
Han Yu
Chao Ren
Heng-Ming Zhang
Gang Wang
Xiaoguang Liu
Xiaoxiao Li
30
2
0
27 Apr 2024
FedProto: Federated Prototype Learning across Heterogeneous Clients
Yue Tan
Guodong Long
Lu Liu
Tianyi Zhou
Qinghua Lu
Jing Jiang
Chengqi Zhang
FedML
151
455
0
01 May 2021
Towards Personalized Federated Learning
A. Tan
Han Yu
Li-zhen Cui
Qiang Yang
FedML
AI4CE
183
840
0
01 Mar 2021
FjORD: Fair and Accurate Federated Learning under heterogeneous targets with Ordered Dropout
Samuel Horváth
Stefanos Laskaridis
Mario Almeida
Ilias Leondiadis
Stylianos I. Venieris
Nicholas D. Lane
176
267
0
26 Feb 2021
1