ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.01414
  4. Cited By
CE-NAS: An End-to-End Carbon-Efficient Neural Architecture Search
  Framework

CE-NAS: An End-to-End Carbon-Efficient Neural Architecture Search Framework

3 June 2024
Yiyang Zhao
Yunzhuo Liu
Bo Jiang
Tian Guo
ArXivPDFHTML

Papers citing "CE-NAS: An End-to-End Carbon-Efficient Neural Architecture Search Framework"

3 / 3 papers shown
Title
One Search Fits All: Pareto-Optimal Eco-Friendly Model Selection
One Search Fits All: Pareto-Optimal Eco-Friendly Model Selection
Filippo Betello
Antonio Purificato
Vittoria Vineis
Gabriele Tolomei
Fabrizio Silvestri
30
0
0
02 May 2025
Informer: Beyond Efficient Transformer for Long Sequence Time-Series
  Forecasting
Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting
Haoyi Zhou
Shanghang Zhang
J. Peng
Shuai Zhang
Jianxin Li
Hui Xiong
Wan Zhang
AI4TS
164
3,799
0
14 Dec 2020
Efficient Multi-objective Neural Architecture Search via Lamarckian
  Evolution
Efficient Multi-objective Neural Architecture Search via Lamarckian Evolution
T. Elsken
J. H. Metzen
Frank Hutter
117
498
0
24 Apr 2018
1