ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.01461
  4. Cited By
Hardness of Learning Neural Networks under the Manifold Hypothesis

Hardness of Learning Neural Networks under the Manifold Hypothesis

3 June 2024
B. Kiani
Jason Wang
Melanie Weber
ArXiv (abs)PDFHTML

Papers citing "Hardness of Learning Neural Networks under the Manifold Hypothesis"

3 / 3 papers shown
Title
Hyperbolic Deep Learning for Foundation Models: A Survey
Hyperbolic Deep Learning for Foundation Models: A Survey
Neil He
Hiren Madhu
Ngoc H. Bui
Menglin Yang
Rex Ying
AI4CE
124
4
0
23 Jul 2025
Towards Non-Euclidean Foundation Models: Advancing AI Beyond Euclidean Frameworks
Towards Non-Euclidean Foundation Models: Advancing AI Beyond Euclidean FrameworksThe Web Conference (WWW), 2025
Menglin Yang
Yifei Zhang
Jialin Chen
Melanie Weber
Rex Ying
170
1
0
20 May 2025
Position: Beyond Euclidean -- Foundation Models Should Embrace Non-Euclidean Geometries
Position: Beyond Euclidean -- Foundation Models Should Embrace Non-Euclidean Geometries
Neil He
Jiahong Liu
Buze Zhang
N. Bui
Ali Maatouk
Menglin Yang
Irwin King
Melanie Weber
Rex Ying
255
4
0
11 Apr 2025
1