ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.01581
  4. Cited By
Neural network learns low-dimensional polynomials with SGD near the
  information-theoretic limit

Neural network learns low-dimensional polynomials with SGD near the information-theoretic limit

3 June 2024
Jason D. Lee
Kazusato Oko
Taiji Suzuki
Denny Wu
    MLT
ArXivPDFHTML

Papers citing "Neural network learns low-dimensional polynomials with SGD near the information-theoretic limit"

8 / 8 papers shown
Title
Mean-Field Analysis for Learning Subspace-Sparse Polynomials with Gaussian Input
Mean-Field Analysis for Learning Subspace-Sparse Polynomials with Gaussian Input
Ziang Chen
Rong Ge
MLT
53
1
0
10 Jan 2025
Learning Gaussian Multi-Index Models with Gradient Flow: Time Complexity and Directional Convergence
Learning Gaussian Multi-Index Models with Gradient Flow: Time Complexity and Directional Convergence
Berfin Simsek
Amire Bendjeddou
Daniel Hsu
32
0
0
13 Nov 2024
Learning with Norm Constrained, Over-parameterized, Two-layer Neural
  Networks
Learning with Norm Constrained, Over-parameterized, Two-layer Neural Networks
Fanghui Liu
L. Dadi
V. Cevher
61
2
0
29 Apr 2024
Nonlinear spiked covariance matrices and signal propagation in deep
  neural networks
Nonlinear spiked covariance matrices and signal propagation in deep neural networks
Zhichao Wang
Denny Wu
Zhou Fan
27
7
0
15 Feb 2024
The Benefits of Reusing Batches for Gradient Descent in Two-Layer
  Networks: Breaking the Curse of Information and Leap Exponents
The Benefits of Reusing Batches for Gradient Descent in Two-Layer Networks: Breaking the Curse of Information and Leap Exponents
Yatin Dandi
Emanuele Troiani
Luca Arnaboldi
Luca Pesce
Lenka Zdeborová
Florent Krzakala
MLT
56
24
0
05 Feb 2024
SGD learning on neural networks: leap complexity and saddle-to-saddle
  dynamics
SGD learning on neural networks: leap complexity and saddle-to-saddle dynamics
Emmanuel Abbe
Enric Boix-Adserà
Theodor Misiakiewicz
FedML
MLT
76
72
0
21 Feb 2023
Learning Single-Index Models with Shallow Neural Networks
Learning Single-Index Models with Shallow Neural Networks
A. Bietti
Joan Bruna
Clayton Sanford
M. Song
150
65
0
27 Oct 2022
Neural Networks Efficiently Learn Low-Dimensional Representations with
  SGD
Neural Networks Efficiently Learn Low-Dimensional Representations with SGD
Alireza Mousavi-Hosseini
Sejun Park
M. Girotti
Ioannis Mitliagkas
Murat A. Erdogdu
MLT
310
48
0
29 Sep 2022
1