ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.02977
37
1

Sparse Color-Code Net: Real-Time RGB-Based 6D Object Pose Estimation on Edge Devices

5 June 2024
Xingjian Yang
Zhitao Yu
A. Banerjee
    3DPC
ArXivPDFHTML
Abstract

As robotics and augmented reality applications increasingly rely on precise and efficient 6D object pose estimation, real-time performance on edge devices is required for more interactive and responsive systems. Our proposed Sparse Color-Code Net (SCCN) embodies a clear and concise pipeline design to effectively address this requirement. SCCN performs pixel-level predictions on the target object in the RGB image, utilizing the sparsity of essential object geometry features to speed up the Perspective-n-Point (PnP) computation process. Additionally, it introduces a novel pixel-level geometry-based object symmetry representation that seamlessly integrates with the initial pose predictions, effectively addressing symmetric object ambiguities. SCCN notably achieves an estimation rate of 19 frames per second (FPS) and 6 FPS on the benchmark LINEMOD dataset and the Occlusion LINEMOD dataset, respectively, for an NVIDIA Jetson AGX Xavier, while consistently maintaining high estimation accuracy at these rates.

View on arXiv
Comments on this paper