ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.02997
  4. Cited By
Residual Connections and Normalization Can Provably Prevent
  Oversmoothing in GNNs

Residual Connections and Normalization Can Provably Prevent Oversmoothing in GNNs

5 June 2024
Michael Scholkemper
Xinyi Wu
Ali Jadbabaie
Michael T. Schaub
ArXivPDFHTML

Papers citing "Residual Connections and Normalization Can Provably Prevent Oversmoothing in GNNs"

4 / 4 papers shown
Title
Graph Neural Networks with Learnable Structural and Positional
  Representations
Graph Neural Networks with Learnable Structural and Positional Representations
Vijay Prakash Dwivedi
A. Luu
T. Laurent
Yoshua Bengio
Xavier Bresson
GNN
197
309
0
15 Oct 2021
Benchmarking Graph Neural Networks
Benchmarking Graph Neural Networks
Vijay Prakash Dwivedi
Chaitanya K. Joshi
Anh Tuan Luu
T. Laurent
Yoshua Bengio
Xavier Bresson
189
916
0
02 Mar 2020
Scaling Laws for Neural Language Models
Scaling Laws for Neural Language Models
Jared Kaplan
Sam McCandlish
T. Henighan
Tom B. Brown
B. Chess
R. Child
Scott Gray
Alec Radford
Jeff Wu
Dario Amodei
246
4,489
0
23 Jan 2020
Interaction Networks for Learning about Objects, Relations and Physics
Interaction Networks for Learning about Objects, Relations and Physics
Peter W. Battaglia
Razvan Pascanu
Matthew Lai
Danilo Jimenez Rezende
Koray Kavukcuoglu
AI4CE
OCL
PINN
GNN
280
1,400
0
01 Dec 2016
1