ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.06449
  4. Cited By
Cometh: A continuous-time discrete-state graph diffusion model

Cometh: A continuous-time discrete-state graph diffusion model

10 June 2024
Antoine Siraudin
Fragkiskos D. Malliaros
Christopher Morris
ArXivPDFHTML

Papers citing "Cometh: A continuous-time discrete-state graph diffusion model"

14 / 14 papers shown
Title
Position: Graph Learning Will Lose Relevance Due To Poor Benchmarks
Position: Graph Learning Will Lose Relevance Due To Poor Benchmarks
Maya Bechler-Speicher
Ben Finkelshtein
Fabrizio Frasca
Luis Muller
Jan Tonshoff
...
Michael M. Bronstein
Mathias Niepert
Bryan Perozzi
Mikhail Galkin
Christopher Morris
OOD
94
2
0
21 Feb 2025
FragFM: Efficient Fragment-Based Molecular Generation via Discrete Flow Matching
FragFM: Efficient Fragment-Based Molecular Generation via Discrete Flow Matching
Joongwon Lee
Seonghwan Kim
Wou Youn Kim
39
0
0
19 Feb 2025
Graph Generative Pre-trained Transformer
Xiaohui Chen
Yinkai Wang
Jiaxing He
Yuanqi Du
S. Hassoun
Xiaolin Xu
Li Liu
34
1
0
03 Jan 2025
Classifier-free graph diffusion for molecular property targeting
Classifier-free graph diffusion for molecular property targeting
Matteo Ninniri
Marco Podda
Davide Bacciu
22
5
0
28 Dec 2023
MUDiff: Unified Diffusion for Complete Molecule Generation
MUDiff: Unified Diffusion for Complete Molecule Generation
Chenqing Hua
Sitao Luan
Minkai Xu
Rex Ying
Jie Fu
Stefano Ermon
Doina Precup
DiffM
36
34
0
28 Apr 2023
DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking
DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking
Gabriele Corso
Hannes Stärk
Bowen Jing
Regina Barzilay
Tommi Jaakkola
DiffM
130
399
0
04 Oct 2022
Diffusion Models for Graphs Benefit From Discrete State Spaces
Diffusion Models for Graphs Benefit From Discrete State Spaces
K. Haefeli
Karolis Martinkus
Nathanael Perraudin
Roger Wattenhofer
DiffM
71
51
0
04 Oct 2022
Diffusion Models: A Comprehensive Survey of Methods and Applications
Diffusion Models: A Comprehensive Survey of Methods and Applications
Ling Yang
Zhilong Zhang
Yingxia Shao
Shenda Hong
Runsheng Xu
Yue Zhao
Wentao Zhang
Bin Cui
Ming-Hsuan Yang
DiffM
MedIm
208
1,277
0
02 Sep 2022
Improved Vector Quantized Diffusion Models
Improved Vector Quantized Diffusion Models
Zhicong Tang
Shuyang Gu
Jianmin Bao
Dong Chen
Fang Wen
DiffM
164
52
0
31 May 2022
A Continuous Time Framework for Discrete Denoising Models
A Continuous Time Framework for Discrete Denoising Models
Andrew Campbell
Joe Benton
Valentin De Bortoli
Tom Rainforth
George Deligiannidis
Arnaud Doucet
DiffM
172
132
0
30 May 2022
Graph Neural Networks with Learnable Structural and Positional
  Representations
Graph Neural Networks with Learnable Structural and Positional Representations
Vijay Prakash Dwivedi
A. Luu
T. Laurent
Yoshua Bengio
Xavier Bresson
GNN
179
304
0
15 Oct 2021
Argmax Flows and Multinomial Diffusion: Learning Categorical
  Distributions
Argmax Flows and Multinomial Diffusion: Learning Categorical Distributions
Emiel Hoogeboom
Didrik Nielsen
P. Jaini
Patrick Forré
Max Welling
DiffM
199
392
0
10 Feb 2021
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation
  Models
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models
Daniil Polykovskiy
Alexander Zhebrak
Benjamín Sánchez-Lengeling
Sergey Golovanov
Oktai Tatanov
...
Simon Johansson
Hongming Chen
Sergey I. Nikolenko
Alán Aspuru-Guzik
Alex Zhavoronkov
ELM
158
628
0
29 Nov 2018
MoleculeNet: A Benchmark for Molecular Machine Learning
MoleculeNet: A Benchmark for Molecular Machine Learning
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
C. Geniesse
Aneesh S. Pappu
K. Leswing
Vijay S. Pande
OOD
152
1,748
0
02 Mar 2017
1