ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.08039
  4. Cited By
Differentially Private Prototypes for Imbalanced Transfer Learning

Differentially Private Prototypes for Imbalanced Transfer Learning

17 February 2025
Dariush Wahdany
Matthew Jagielski
Adam Dziedzic
Franziska Boenisch
ArXivPDFHTML

Papers citing "Differentially Private Prototypes for Imbalanced Transfer Learning"

8 / 8 papers shown
Title
Scalable and Efficient Training of Large Convolutional Neural Networks
  with Differential Privacy
Scalable and Efficient Training of Large Convolutional Neural Networks with Differential Privacy
Zhiqi Bu
J. Mao
Shiyun Xu
131
47
0
21 May 2022
A Joint Exponential Mechanism For Differentially Private Top-$k$
A Joint Exponential Mechanism For Differentially Private Top-kkk
Jennifer Gillenwater
Matthew Joseph
Andrés Munoz Medina
Mónica Ribero
88
14
0
28 Jan 2022
Masked Autoencoders Are Scalable Vision Learners
Masked Autoencoders Are Scalable Vision Learners
Kaiming He
Xinlei Chen
Saining Xie
Yanghao Li
Piotr Dollár
Ross B. Girshick
ViT
TPM
258
7,337
0
11 Nov 2021
Differentially Private Fine-tuning of Language Models
Differentially Private Fine-tuning of Language Models
Da Yu
Saurabh Naik
A. Backurs
Sivakanth Gopi
Huseyin A. Inan
...
Y. Lee
Andre Manoel
Lukas Wutschitz
Sergey Yekhanin
Huishuai Zhang
134
344
0
13 Oct 2021
Hyperparameter Tuning with Renyi Differential Privacy
Hyperparameter Tuning with Renyi Differential Privacy
Nicolas Papernot
Thomas Steinke
123
118
0
07 Oct 2021
Opacus: User-Friendly Differential Privacy Library in PyTorch
Opacus: User-Friendly Differential Privacy Library in PyTorch
Ashkan Yousefpour
I. Shilov
Alexandre Sablayrolles
Davide Testuggine
Karthik Prasad
...
Sayan Gosh
Akash Bharadwaj
Jessica Zhao
Graham Cormode
Ilya Mironov
VLM
144
347
0
25 Sep 2021
Emerging Properties in Self-Supervised Vision Transformers
Emerging Properties in Self-Supervised Vision Transformers
Mathilde Caron
Hugo Touvron
Ishan Misra
Hervé Jégou
Julien Mairal
Piotr Bojanowski
Armand Joulin
283
5,723
0
29 Apr 2021
SMOTE: Synthetic Minority Over-sampling Technique
SMOTE: Synthetic Minority Over-sampling Technique
Nitesh V. Chawla
Kevin W. Bowyer
Lawrence Hall
W. Kegelmeyer
AI4TS
160
25,150
0
09 Jun 2011
1