ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.09366
  4. Cited By
Towards an Improved Understanding and Utilization of Maximum Manifold
  Capacity Representations

Towards an Improved Understanding and Utilization of Maximum Manifold Capacity Representations

13 June 2024
Rylan Schaeffer
Victor Lecomte
Dhruv Pai
Andres Carranza
Berivan Isik
Alyssa Unell
Mikail Khona
T. Yerxa
Yann LeCun
SueYeon Chung
Andrey Gromov
Ravid Shwartz-Ziv
Sanmi Koyejo
ArXivPDFHTML

Papers citing "Towards an Improved Understanding and Utilization of Maximum Manifold Capacity Representations"

4 / 4 papers shown
Title
Simplifying DINO via Coding Rate Regularization
Simplifying DINO via Coding Rate Regularization
Ziyang Wu
Jingyuan Zhang
Druv Pai
X. Wang
Chandan Singh
Jianwei Yang
Jianfeng Gao
Yi-An Ma
98
1
0
17 Feb 2025
Emerging Properties in Self-Supervised Vision Transformers
Emerging Properties in Self-Supervised Vision Transformers
Mathilde Caron
Hugo Touvron
Ishan Misra
Hervé Jégou
Julien Mairal
Piotr Bojanowski
Armand Joulin
283
5,723
0
29 Apr 2021
Improved Baselines with Momentum Contrastive Learning
Improved Baselines with Momentum Contrastive Learning
Xinlei Chen
Haoqi Fan
Ross B. Girshick
Kaiming He
SSL
229
3,029
0
09 Mar 2020
Scaling Laws for Neural Language Models
Scaling Laws for Neural Language Models
Jared Kaplan
Sam McCandlish
T. Henighan
Tom B. Brown
B. Chess
R. Child
Scott Gray
Alec Radford
Jeff Wu
Dario Amodei
220
3,054
0
23 Jan 2020
1