Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2406.12027
Cited By
Adversarial Perturbations Cannot Reliably Protect Artists From Generative AI
17 June 2024
Robert Honig
Javier Rando
Nicholas Carlini
Florian Tramèr
WIGM
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Adversarial Perturbations Cannot Reliably Protect Artists From Generative AI"
6 / 6 papers shown
Title
An Adversarial Perspective on Machine Unlearning for AI Safety
Jakub Łucki
Boyi Wei
Yangsibo Huang
Peter Henderson
F. Tramèr
Javier Rando
MU
AAML
66
31
0
26 Sep 2024
Dormant: Defending against Pose-driven Human Image Animation
Jiachen Zhou
Mingsi Wang
Tianlin Li
Guozhu Meng
Kai Chen
44
3
0
22 Sep 2024
Kandinsky: an Improved Text-to-Image Synthesis with Image Prior and Latent Diffusion
Anton Razzhigaev
Arseniy Shakhmatov
Anastasia Maltseva
V.Ya. Arkhipkin
Igor Pavlov
Ilya Ryabov
Angelina Kuts
Alexander Panchenko
Andrey Kuznetsov
Denis Dimitrov
37
76
0
05 Oct 2023
BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models
Junnan Li
Dongxu Li
Silvio Savarese
Steven C. H. Hoi
VLM
MLLM
244
4,186
0
30 Jan 2023
Diffusion Models for Adversarial Purification
Weili Nie
Brandon Guo
Yujia Huang
Chaowei Xiao
Arash Vahdat
Anima Anandkumar
WIGM
187
410
0
16 May 2022
Unlearnable Examples: Making Personal Data Unexploitable
Hanxun Huang
Xingjun Ma
S. Erfani
James Bailey
Yisen Wang
MIACV
136
189
0
13 Jan 2021
1