ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.16943
  4. Cited By
EarDA: Towards Accurate and Data-Efficient Earable Activity Sensing

EarDA: Towards Accurate and Data-Efficient Earable Activity Sensing

18 June 2024
Shengzhe Lyu
Yongliang Chen
Di Duan
Renqi Jia
Weitao Xu
ArXiv (abs)PDFHTML

Papers citing "EarDA: Towards Accurate and Data-Efficient Earable Activity Sensing"

2 / 2 papers shown
Title
Argus: Multi-View Egocentric Human Mesh Reconstruction Based on
  Stripped-Down Wearable mmWave Add-on
Argus: Multi-View Egocentric Human Mesh Reconstruction Based on Stripped-Down Wearable mmWave Add-on
Di Duan
Shengzhe Lyu
Mu Yuan
Hongfei Xue
Tianxing Li
Weitao Xu
Kaishun Wu
Guoliang Xing
63
2
0
01 Nov 2024
Towards Battery-Free Wireless Sensing via Radio-Frequency Energy
  Harvesting
Towards Battery-Free Wireless Sensing via Radio-Frequency Energy Harvesting
Tao Ni
Zehua Sun
Mingda Han
Guohao Lan
Yaxiong Xie
Zhenjiang Li
Tao Gu
Weitao Xu
46
0
0
26 Aug 2024
1