Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2406.17167
Cited By
Learning on Transformers is Provable Low-Rank and Sparse: A One-layer Analysis
24 June 2024
Hongkang Li
Meng Wang
Shuai Zhang
Sijia Liu
Pin-Yu Chen
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning on Transformers is Provable Low-Rank and Sparse: A One-layer Analysis"
7 / 7 papers shown
Title
When is Task Vector Provably Effective for Model Editing? A Generalization Analysis of Nonlinear Transformers
Hongkang Li
Yihua Zhang
Shuai Zhang
M. Wang
Sijia Liu
Pin-Yu Chen
MoMe
57
2
0
15 Apr 2025
From Sparse Dependence to Sparse Attention: Unveiling How Chain-of-Thought Enhances Transformer Sample Efficiency
Kaiyue Wen
Huaqing Zhang
Hongzhou Lin
Jingzhao Zhang
MoE
LRM
58
2
0
07 Oct 2024
Sparks of Artificial General Intelligence: Early experiments with GPT-4
Sébastien Bubeck
Varun Chandrasekaran
Ronen Eldan
J. Gehrke
Eric Horvitz
...
Scott M. Lundberg
Harsha Nori
Hamid Palangi
Marco Tulio Ribeiro
Yi Zhang
ELM
AI4MH
AI4CE
ALM
206
2,232
0
22 Mar 2023
How Do Transformers Learn Topic Structure: Towards a Mechanistic Understanding
Yuchen Li
Yuan-Fang Li
Andrej Risteski
107
61
0
07 Mar 2023
SGD learning on neural networks: leap complexity and saddle-to-saddle dynamics
Emmanuel Abbe
Enric Boix-Adserà
Theodor Misiakiewicz
FedML
MLT
76
72
0
21 Feb 2023
Learning Single-Index Models with Shallow Neural Networks
A. Bietti
Joan Bruna
Clayton Sanford
M. Song
160
65
0
27 Oct 2022
Training language models to follow instructions with human feedback
Long Ouyang
Jeff Wu
Xu Jiang
Diogo Almeida
Carroll L. Wainwright
...
Amanda Askell
Peter Welinder
Paul Christiano
Jan Leike
Ryan J. Lowe
OSLM
ALM
301
11,730
0
04 Mar 2022
1