ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.17537
  4. Cited By
SincVAE: a New Approach to Improve Anomaly Detection on EEG Data Using
  SincNet and Variational Autoencoder

SincVAE: a New Approach to Improve Anomaly Detection on EEG Data Using SincNet and Variational Autoencoder

25 June 2024
A. Pollastro
Francesco Isgrò
R. Prevete
ArXivPDFHTML

Papers citing "SincVAE: a New Approach to Improve Anomaly Detection on EEG Data Using SincNet and Variational Autoencoder"

3 / 3 papers shown
Title
Supervised and Unsupervised Deep Learning Approaches for EEG Seizure
  Prediction
Supervised and Unsupervised Deep Learning Approaches for EEG Seizure Prediction
Zakary Georgis-Yap
Milos R. Popovic
Shehroz S. Khan
27
5
0
24 Apr 2023
Semi-supervised detection of structural damage using Variational
  Autoencoder and a One-Class Support Vector Machine
Semi-supervised detection of structural damage using Variational Autoencoder and a One-Class Support Vector Machine
A. Pollastro
Giusiana Testa
A. Bilotta
R. Prevete
DRL
21
10
0
11 Oct 2022
Detection of Epileptic Seizures on EEG Signals Using ANFIS Classifier,
  Autoencoders and Fuzzy Entropies
Detection of Epileptic Seizures on EEG Signals Using ANFIS Classifier, Autoencoders and Fuzzy Entropies
A. Shoeibi
Navid Ghassemi
Marjane Khodatars
Parisa Moridian
R. Alizadehsani
A. Zare
Abbas Khosravi
A. Subasi
U. Acharya
Juan M Gorriz
28
107
0
06 Sep 2021
1