ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.17620
  4. Cited By
OCCAM: Online Continuous Controller Adaptation with Meta-Learned Models

OCCAM: Online Continuous Controller Adaptation with Meta-Learned Models

25 June 2024
Hersh Sanghvi
Spencer Folk
Camillo J. Taylor
ArXivPDFHTML

Papers citing "OCCAM: Online Continuous Controller Adaptation with Meta-Learned Models"

8 / 8 papers shown
Title
Fast Online Adaptive Neural MPC via Meta-Learning
Fast Online Adaptive Neural MPC via Meta-Learning
Yu Mei
Xinyu Zhou
Shuyang Yu
Vaibhav Srivastava
Xiaobo Tan
43
0
0
23 Apr 2025
Meta-Learning Online Dynamics Model Adaptation in Off-Road Autonomous Driving
Meta-Learning Online Dynamics Model Adaptation in Off-Road Autonomous Driving
Jacob Levy
Jason Gibson
Bogdan I. Vlahov
Erica Tevere
Evangelos A. Theodorou
David Fridovich-Keil
Patrick Spieler
30
0
0
23 Apr 2025
In-Hand Object Rotation via Rapid Motor Adaptation
In-Hand Object Rotation via Rapid Motor Adaptation
Haozhi Qi
Ashish Kumar
Roberto Calandra
Yinsong Ma
Jitendra Malik
123
102
0
10 Oct 2022
Adapting Rapid Motor Adaptation for Bipedal Robots
Adapting Rapid Motor Adaptation for Bipedal Robots
Ashish Kumar
Zhongyu Li
Jun Zeng
Deepak Pathak
K. Sreenath
Jitendra Malik
52
62
0
30 May 2022
Neural-Fly Enables Rapid Learning for Agile Flight in Strong Winds
Neural-Fly Enables Rapid Learning for Agile Flight in Strong Winds
Michael O'Connell
Guanya Shi
Xichen Shi
Kamyar Azizzadenesheli
Anima Anandkumar
Yisong Yue
Soon-Jo Chung
65
167
0
13 May 2022
Dynamics-Aware Quality-Diversity for Efficient Learning of Skill
  Repertoires
Dynamics-Aware Quality-Diversity for Efficient Learning of Skill Repertoires
Bryan Lim
Luca Grillotti
Lorenzo Bernasconi
Antoine Cully
66
28
0
16 Sep 2021
Rapid Learning or Feature Reuse? Towards Understanding the Effectiveness
  of MAML
Rapid Learning or Feature Reuse? Towards Understanding the Effectiveness of MAML
Aniruddh Raghu
M. Raghu
Samy Bengio
Oriol Vinyals
172
639
0
19 Sep 2019
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
243
11,659
0
09 Mar 2017
1