ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.19888
  4. Cited By
Fine-tuning of Geospatial Foundation Models for Aboveground Biomass
  Estimation

Fine-tuning of Geospatial Foundation Models for Aboveground Biomass Estimation

28 June 2024
Michal Muszynski
Levente Klein
Ademir Ferreira da Silva
Anjani Prasad Atluri
Carlos Gomes
Daniela Szwarcman
Gurkanwar Singh
Kewen Gu
M. Zortea
Naomi Simumba
P. Fraccaro
Shraddha Singh
Steve Meliksetian
Campbell Watson
Daiki Kimura
Harini Srinivasan
ArXivPDFHTML

Papers citing "Fine-tuning of Geospatial Foundation Models for Aboveground Biomass Estimation"

4 / 4 papers shown
Title
LiDAR Remote Sensing Meets Weak Supervision: Concepts, Methods, and Perspectives
LiDAR Remote Sensing Meets Weak Supervision: Concepts, Methods, and Perspectives
Yuan Gao
Shaobo Xia
P. Wang
Xiaohuan Xi
Sheng Nie
Cheng-Xiang Wang
42
0
0
24 Mar 2025
Towards Urban General Intelligence: A Review and Outlook of Urban Foundation Models
Towards Urban General Intelligence: A Review and Outlook of Urban Foundation Models
Weijiao Zhang
Jindong Han
Zhao Xu
Hang Ni
Hao Liu
Hui Xiong
Hui Xiong
AI4CE
77
14
0
30 Jan 2024
Masked Autoencoders Are Scalable Vision Learners
Masked Autoencoders Are Scalable Vision Learners
Kaiming He
Xinlei Chen
Saining Xie
Yanghao Li
Piotr Dollár
Ross B. Girshick
ViT
TPM
258
7,337
0
11 Nov 2021
Real-Time Single Image and Video Super-Resolution Using an Efficient
  Sub-Pixel Convolutional Neural Network
Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network
Wenzhe Shi
Jose Caballero
Ferenc Huszár
J. Totz
Andrew P. Aitken
Rob Bishop
Daniel Rueckert
Zehan Wang
SupR
183
5,138
0
16 Sep 2016
1