ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.00744
  4. Cited By
Disentangled Representations for Causal Cognition

Disentangled Representations for Causal Cognition

30 June 2024
Filippo Torresan
Manuel Baltieri
    CML
ArXivPDFHTML

Papers citing "Disentangled Representations for Causal Cognition"

8 / 8 papers shown
Title
Reinforcement Learning in Categorical Cybernetics
Reinforcement Learning in Categorical Cybernetics
Jules Hedges
Riu Rodríguez Sakamoto
25
3
0
03 Apr 2024
A Sparsity Principle for Partially Observable Causal Representation
  Learning
A Sparsity Principle for Partially Observable Causal Representation Learning
Danru Xu
Dingling Yao
Sébastien Lachapelle
Perouz Taslakian
Julius von Kügelgen
Francesco Locatello
Sara Magliacane
CML
25
13
0
13 Mar 2024
Invariant Causal Imitation Learning for Generalizable Policies
Invariant Causal Imitation Learning for Generalizable Policies
Ioana Bica
Daniel Jarrett
Mihaela van der Schaar
CML
OffRL
OOD
55
32
0
02 Nov 2023
Disentanglement with Biological Constraints: A Theory of Functional Cell
  Types
Disentanglement with Biological Constraints: A Theory of Functional Cell Types
James C. R. Whittington
W. Dorrell
Surya Ganguli
Timothy Edward John Behrens
34
39
0
30 Sep 2022
The Role of Pretrained Representations for the OOD Generalization of
  Reinforcement Learning Agents
The Role of Pretrained Representations for the OOD Generalization of Reinforcement Learning Agents
Andrea Dittadi
Frederik Trauble
M. Wuthrich
Felix Widmaier
Peter V. Gehler
Ole Winther
Francesco Locatello
Olivier Bachem
Bernhard Schölkopf
Stefan Bauer
OOD
25
15
0
12 Jul 2021
Does Invariant Risk Minimization Capture Invariance?
Does Invariant Risk Minimization Capture Invariance?
Pritish Kamath
Akilesh Tangella
Danica J. Sutherland
Nathan Srebro
OOD
185
125
0
04 Jan 2021
Offline Reinforcement Learning: Tutorial, Review, and Perspectives on
  Open Problems
Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems
Sergey Levine
Aviral Kumar
George Tucker
Justin Fu
OffRL
GP
321
1,944
0
04 May 2020
Weakly-Supervised Disentanglement Without Compromises
Weakly-Supervised Disentanglement Without Compromises
Francesco Locatello
Ben Poole
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
Michael Tschannen
CoGe
OOD
DRL
171
311
0
07 Feb 2020
1