Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2407.02191
Cited By
Attack-Aware Noise Calibration for Differential Privacy
2 July 2024
B. Kulynych
Juan Felipe Gomez
G. Kaissis
Flavio du Pin Calmon
Carmela Troncoso
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Attack-Aware Noise Calibration for Differential Privacy"
5 / 5 papers shown
Title
What Are the Chances? Explaining the Epsilon Parameter in Differential Privacy
Priyanka Nanayakkara
Mary Anne Smart
Rachel Cummings
Gabriel Kaptchuk
Elissa M. Redmiles
22
32
0
01 Mar 2023
How to DP-fy ML: A Practical Guide to Machine Learning with Differential Privacy
Natalia Ponomareva
Hussein Hazimeh
Alexey Kurakin
Zheng Xu
Carson E. Denison
H. B. McMahan
Sergei Vassilvitskii
Steve Chien
Abhradeep Thakurta
94
165
0
01 Mar 2023
Differentially Private Fine-tuning of Language Models
Da Yu
Saurabh Naik
A. Backurs
Sivakanth Gopi
Huseyin A. Inan
...
Y. Lee
Andre Manoel
Lukas Wutschitz
Sergey Yekhanin
Huishuai Zhang
134
344
0
13 Oct 2021
Opacus: User-Friendly Differential Privacy Library in PyTorch
Ashkan Yousefpour
I. Shilov
Alexandre Sablayrolles
Davide Testuggine
Karthik Prasad
...
Sayan Gosh
Akash Bharadwaj
Jessica Zhao
Graham Cormode
Ilya Mironov
VLM
138
347
0
25 Sep 2021
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding
Alex Jinpeng Wang
Amanpreet Singh
Julian Michael
Felix Hill
Omer Levy
Samuel R. Bowman
ELM
294
6,927
0
20 Apr 2018
1