ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.04751
  4. Cited By
A Unified Learn-to-Distort-Data Framework for Privacy-Utility Trade-off
  in Trustworthy Federated Learning

A Unified Learn-to-Distort-Data Framework for Privacy-Utility Trade-off in Trustworthy Federated Learning

5 July 2024
Xiaojin Zhang
Mingcong Xu
Wei Chen
    FedML
ArXivPDFHTML

Papers citing "A Unified Learn-to-Distort-Data Framework for Privacy-Utility Trade-off in Trustworthy Federated Learning"

3 / 3 papers shown
Title
Learning the Unlearnable: Adversarial Augmentations Suppress Unlearnable
  Example Attacks
Learning the Unlearnable: Adversarial Augmentations Suppress Unlearnable Example Attacks
Tianrui Qin
Xitong Gao
Juanjuan Zhao
Kejiang Ye
Chengzhong Xu
AAML
MU
32
27
0
27 Mar 2023
Unlearnable Examples: Making Personal Data Unexploitable
Unlearnable Examples: Making Personal Data Unexploitable
Hanxun Huang
Xingjun Ma
S. Erfani
James Bailey
Yisen Wang
MIACV
136
190
0
13 Jan 2021
FedPAQ: A Communication-Efficient Federated Learning Method with
  Periodic Averaging and Quantization
FedPAQ: A Communication-Efficient Federated Learning Method with Periodic Averaging and Quantization
Amirhossein Reisizadeh
Aryan Mokhtari
Hamed Hassani
Ali Jadbabaie
Ramtin Pedarsani
FedML
162
760
0
28 Sep 2019
1