Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2407.05040
Cited By
Code Less, Align More: Efficient LLM Fine-tuning for Code Generation with Data Pruning
6 July 2024
Yun-Da Tsai
Mingjie Liu
Haoxing Ren
SyDa
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Code Less, Align More: Efficient LLM Fine-tuning for Code Generation with Data Pruning"
7 / 7 papers shown
Title
Every FLOP Counts: Scaling a 300B Mixture-of-Experts LING LLM without Premium GPUs
Ling Team
B. Zeng
C. Huang
Chao Zhang
Changxin Tian
...
Zhaoxin Huan
Zujie Wen
Zhenhang Sun
Zhuoxuan Du
Z. He
MoE
ALM
97
2
0
07 Mar 2025
Towards a Theoretical Understanding of Synthetic Data in LLM Post-Training: A Reverse-Bottleneck Perspective
Zeyu Gan
Yong Liu
SyDa
25
1
0
02 Oct 2024
Benchmarking Large Language Model Uncertainty for Prompt Optimization
Pei-Fu Guo
Yun-Da Tsai
Shou-De Lin
ELM
LRM
16
1
0
16 Sep 2024
LESS: Selecting Influential Data for Targeted Instruction Tuning
Mengzhou Xia
Sadhika Malladi
Suchin Gururangan
Sanjeev Arora
Danqi Chen
71
180
0
06 Feb 2024
Data Selection for Fine-tuning Large Language Models Using Transferred Shapley Values
S. Schoch
Ritwick Mishra
Yangfeng Ji
TDI
69
18
0
16 Jun 2023
Is Your Code Generated by ChatGPT Really Correct? Rigorous Evaluation of Large Language Models for Code Generation
Jiawei Liu
Chun Xia
Yuyao Wang
Lingming Zhang
ELM
ALM
163
388
0
02 May 2023
Instruction Tuning with GPT-4
Baolin Peng
Chunyuan Li
Pengcheng He
Michel Galley
Jianfeng Gao
SyDa
ALM
LM&MA
154
576
0
06 Apr 2023
1