ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.05599
27
1

Generative Debunking of Climate Misinformation

8 July 2024
Francisco Zanartu
Yulia Otmakhova
John Cook
Lea Frermann
    HILM
    MU
ArXivPDFHTML
Abstract

Misinformation about climate change causes numerous negative impacts, necessitating corrective responses. Psychological research has offered various strategies for reducing the influence of climate misinformation, such as the fact-myth-fallacy-fact-structure. However, practically implementing corrective interventions at scale represents a challenge. Automatic detection and correction of misinformation offers a solution to the misinformation problem. This study documents the development of large language models that accept as input a climate myth and produce a debunking that adheres to the fact-myth-fallacy-fact (``truth sandwich'') structure, by incorporating contrarian claim classification and fallacy detection into an LLM prompting framework. We combine open (Mixtral, Palm2) and proprietary (GPT-4) LLMs with prompting strategies of varying complexity. Experiments reveal promising performance of GPT-4 and Mixtral if combined with structured prompts. We identify specific challenges of debunking generation and human evaluation, and map out avenues for future work. We release a dataset of high-quality truth-sandwich debunkings, source code and a demo of the debunking system.

View on arXiv
Comments on this paper