ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.06985
  4. Cited By
PEER: Expertizing Domain-Specific Tasks with a Multi-Agent Framework and
  Tuning Methods

PEER: Expertizing Domain-Specific Tasks with a Multi-Agent Framework and Tuning Methods

9 July 2024
Yiying Wang
Xiaojing Li
Binzhu Wang
Yueyang Zhou
Yingru Lin
Han Ji
Hong Chen
Jinshi Zhang
Fei Yu
Zewei Zhao
Song Jin
Renji Gong
Wanqing Xu
ArXivPDFHTML

Papers citing "PEER: Expertizing Domain-Specific Tasks with a Multi-Agent Framework and Tuning Methods"

2 / 2 papers shown
Title
KTO: Model Alignment as Prospect Theoretic Optimization
KTO: Model Alignment as Prospect Theoretic Optimization
Kawin Ethayarajh
Winnie Xu
Niklas Muennighoff
Dan Jurafsky
Douwe Kiela
159
437
0
02 Feb 2024
A Meta Reinforcement Learning Approach for Predictive Autoscaling in the
  Cloud
A Meta Reinforcement Learning Approach for Predictive Autoscaling in the Cloud
Siqiao Xue
C. Qu
X. Shi
Cong Liao
Shiyi Zhu
...
Yun Hu
Lei Lei
Yang Zheng
Jianguo Li
James Y. Zhang
49
36
0
31 May 2022
1