ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.11427
  4. Cited By
Semi-Supervised Generative Models for Disease Trajectories: A Case Study
  on Systemic Sclerosis

Semi-Supervised Generative Models for Disease Trajectories: A Case Study on Systemic Sclerosis

16 July 2024
Cécile Trottet
Manuel Schürch
Ahmed Allam
Imon Barua
L. Petelytska
David Launay
Paolo Airò
Radim Bečvář
Christopher Denton
Mislav Radic
Oliver Distler
A. Hoffmann-Vold
Michael Krauthammer
Eustar collaborators
    MedIm
ArXivPDFHTML

Papers citing "Semi-Supervised Generative Models for Disease Trajectories: A Case Study on Systemic Sclerosis"

4 / 4 papers shown
Title
Temporal Supervised Contrastive Learning for Modeling Patient Risk
  Progression
Temporal Supervised Contrastive Learning for Modeling Patient Risk Progression
Shahriar Noroozizadeh
Jeremy C. Weiss
George H. Chen
22
7
0
10 Dec 2023
SW-VAE: Weakly Supervised Learn Disentangled Representation Via Latent
  Factor Swapping
SW-VAE: Weakly Supervised Learn Disentangled Representation Via Latent Factor Swapping
Jiageng Zhu
Hanchen Xie
Wael AbdAlmageed
SSL
CoGe
DRL
25
4
0
21 Sep 2022
Pythae: Unifying Generative Autoencoders in Python -- A Benchmarking Use
  Case
Pythae: Unifying Generative Autoencoders in Python -- A Benchmarking Use Case
Clément Chadebec
Louis J. Vincent
S. Allassonnière
DRL
34
28
0
16 Jun 2022
Weakly-Supervised Disentanglement Without Compromises
Weakly-Supervised Disentanglement Without Compromises
Francesco Locatello
Ben Poole
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
Michael Tschannen
CoGe
OOD
DRL
173
313
0
07 Feb 2020
1