ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.13420
  4. Cited By
Exploring End-to-end Differentiable Neural Charged Particle Tracking --
  A Loss Landscape Perspective

Exploring End-to-end Differentiable Neural Charged Particle Tracking -- A Loss Landscape Perspective

18 July 2024
T. Kortus
Ralf Keidel
N.R. Gauger
ArXivPDFHTML

Papers citing "Exploring End-to-end Differentiable Neural Charged Particle Tracking -- A Loss Landscape Perspective"

4 / 4 papers shown
Title
Rethinking and Benchmarking Predict-then-Optimize Paradigm for
  Combinatorial Optimization Problems
Rethinking and Benchmarking Predict-then-Optimize Paradigm for Combinatorial Optimization Problems
Haoyu Geng
Hang Ruan
Runzhong Wang
Yang Li
Yang Wang
Lei Chen
Junchi Yan
32
0
0
13 Nov 2023
Linear Connectivity Reveals Generalization Strategies
Linear Connectivity Reveals Generalization Strategies
Jeevesh Juneja
Rachit Bansal
Kyunghyun Cho
João Sedoc
Naomi Saphra
232
45
0
24 May 2022
On the Prediction Instability of Graph Neural Networks
On the Prediction Instability of Graph Neural Networks
Max Klabunde
Florian Lemmerich
35
5
0
20 May 2022
Interaction Networks for Learning about Objects, Relations and Physics
Interaction Networks for Learning about Objects, Relations and Physics
Peter W. Battaglia
Razvan Pascanu
Matthew Lai
Danilo Jimenez Rezende
Koray Kavukcuoglu
AI4CE
OCL
PINN
GNN
252
1,394
0
01 Dec 2016
1