Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2407.14207
Cited By
Longhorn: State Space Models are Amortized Online Learners
19 July 2024
Bo Liu
Rui Wang
Lemeng Wu
Yihao Feng
Peter Stone
Qian Liu
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Longhorn: State Space Models are Amortized Online Learners"
6 / 6 papers shown
Title
State-space models can learn in-context by gradient descent
Neeraj Mohan Sushma
Yudou Tian
Harshvardhan Mestha
Nicolo Colombo
David Kappel
Anand Subramoney
26
3
0
15 Oct 2024
HGRN2: Gated Linear RNNs with State Expansion
Zhen Qin
Songlin Yang
Weixuan Sun
Xuyang Shen
Dong Li
Weigao Sun
Yiran Zhong
LRM
34
45
0
11 Apr 2024
Griffin: Mixing Gated Linear Recurrences with Local Attention for Efficient Language Models
Soham De
Samuel L. Smith
Anushan Fernando
Aleksandar Botev
George-Christian Muraru
...
David Budden
Yee Whye Teh
Razvan Pascanu
Nando de Freitas
Çağlar Gülçehre
Mamba
51
116
0
29 Feb 2024
Simple linear attention language models balance the recall-throughput tradeoff
Simran Arora
Sabri Eyuboglu
Michael Zhang
Aman Timalsina
Silas Alberti
Dylan Zinsley
James Zou
Atri Rudra
Christopher Ré
34
60
0
28 Feb 2024
Zoology: Measuring and Improving Recall in Efficient Language Models
Simran Arora
Sabri Eyuboglu
Aman Timalsina
Isys Johnson
Michael Poli
James Zou
Atri Rudra
Christopher Ré
56
65
0
08 Dec 2023
Resurrecting Recurrent Neural Networks for Long Sequences
Antonio Orvieto
Samuel L. Smith
Albert Gu
Anushan Fernando
Çağlar Gülçehre
Razvan Pascanu
Soham De
83
258
0
11 Mar 2023
1