ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.14207
  4. Cited By
Longhorn: State Space Models are Amortized Online Learners

Longhorn: State Space Models are Amortized Online Learners

19 July 2024
Bo Liu
Rui Wang
Lemeng Wu
Yihao Feng
Peter Stone
Qian Liu
ArXivPDFHTML

Papers citing "Longhorn: State Space Models are Amortized Online Learners"

6 / 6 papers shown
Title
State-space models can learn in-context by gradient descent
State-space models can learn in-context by gradient descent
Neeraj Mohan Sushma
Yudou Tian
Harshvardhan Mestha
Nicolo Colombo
David Kappel
Anand Subramoney
26
3
0
15 Oct 2024
HGRN2: Gated Linear RNNs with State Expansion
HGRN2: Gated Linear RNNs with State Expansion
Zhen Qin
Songlin Yang
Weixuan Sun
Xuyang Shen
Dong Li
Weigao Sun
Yiran Zhong
LRM
34
45
0
11 Apr 2024
Griffin: Mixing Gated Linear Recurrences with Local Attention for
  Efficient Language Models
Griffin: Mixing Gated Linear Recurrences with Local Attention for Efficient Language Models
Soham De
Samuel L. Smith
Anushan Fernando
Aleksandar Botev
George-Christian Muraru
...
David Budden
Yee Whye Teh
Razvan Pascanu
Nando de Freitas
Çağlar Gülçehre
Mamba
51
116
0
29 Feb 2024
Simple linear attention language models balance the recall-throughput tradeoff
Simple linear attention language models balance the recall-throughput tradeoff
Simran Arora
Sabri Eyuboglu
Michael Zhang
Aman Timalsina
Silas Alberti
Dylan Zinsley
James Zou
Atri Rudra
Christopher Ré
34
60
0
28 Feb 2024
Zoology: Measuring and Improving Recall in Efficient Language Models
Zoology: Measuring and Improving Recall in Efficient Language Models
Simran Arora
Sabri Eyuboglu
Aman Timalsina
Isys Johnson
Michael Poli
James Zou
Atri Rudra
Christopher Ré
56
65
0
08 Dec 2023
Resurrecting Recurrent Neural Networks for Long Sequences
Resurrecting Recurrent Neural Networks for Long Sequences
Antonio Orvieto
Samuel L. Smith
Albert Gu
Anushan Fernando
Çağlar Gülçehre
Razvan Pascanu
Soham De
83
258
0
11 Mar 2023
1