ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.14208
  4. Cited By
Memory-Efficient Pseudo-Labeling for Online Source-Free Universal Domain
  Adaptation using a Gaussian Mixture Model

Memory-Efficient Pseudo-Labeling for Online Source-Free Universal Domain Adaptation using a Gaussian Mixture Model

19 July 2024
Pascal Schlachter
Simon Wagner
Bin Yang
    TTA
ArXivPDFHTML

Papers citing "Memory-Efficient Pseudo-Labeling for Online Source-Free Universal Domain Adaptation using a Gaussian Mixture Model"

2 / 2 papers shown
Title
ViLAaD: Enhancing "Attracting and Dispersing'' Source-Free Domain Adaptation with Vision-and-Language Model
ViLAaD: Enhancing "Attracting and Dispersing'' Source-Free Domain Adaptation with Vision-and-Language Model
Shuhei Tarashima
Xinqi Shu
Norio Tagawa
VLM
46
0
0
30 Mar 2025
On the Effectiveness of Image Rotation for Open Set Domain Adaptation
On the Effectiveness of Image Rotation for Open Set Domain Adaptation
S. Bucci
Mohammad Reza Loghmani
Tatiana Tommasi
34
119
0
24 Jul 2020
1