Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2407.14651
Cited By
Improving Representation of High-frequency Components for Medical Visual Foundation Models
19 July 2024
Yuetan Chu
Yilan Zhang
Zhongyi Han
Changchun Yang
Longxi Zhou
Gongning Luo
Chao Huang
Xin Gao
MedIm
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Improving Representation of High-frequency Components for Medical Visual Foundation Models"
6 / 6 papers shown
Title
Flow Along the K-Amplitude for Generative Modeling
Weitao Du
Shuning Chang
Jiasheng Tang
Yu Rong
F. Wang
Shengchao Liu
46
0
0
27 Apr 2025
What Do Self-Supervised Vision Transformers Learn?
Namuk Park
Wonjae Kim
Byeongho Heo
Taekyung Kim
Sangdoo Yun
SSL
65
76
1
01 May 2023
Scale-MAE: A Scale-Aware Masked Autoencoder for Multiscale Geospatial Representation Learning
Colorado Reed
Ritwik Gupta
Shufan Li
S. Brockman
Christopher Funk
Brian Clipp
Kurt Keutzer
Salvatore Candido
M. Uyttendaele
Trevor Darrell
113
165
0
30 Dec 2022
Uniform Masking: Enabling MAE Pre-training for Pyramid-based Vision Transformers with Locality
Xiang Li
Wenhai Wang
Lingfeng Yang
Jian Yang
95
73
0
20 May 2022
Masked Autoencoders Are Scalable Vision Learners
Kaiming He
Xinlei Chen
Saining Xie
Yanghao Li
Piotr Dollár
Ross B. Girshick
ViT
TPM
258
7,337
0
11 Nov 2021
MedMNIST v2 -- A large-scale lightweight benchmark for 2D and 3D biomedical image classification
Jiancheng Yang
Rui Shi
D. Wei
Zequan Liu
Lin Zhao
B. Ke
Hanspeter Pfister
Bingbing Ni
VLM
161
634
0
27 Oct 2021
1