ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.18930
  4. Cited By
Dynamic Encoder Size Based on Data-Driven Layer-wise Pruning for Speech
  Recognition

Dynamic Encoder Size Based on Data-Driven Layer-wise Pruning for Speech Recognition

10 July 2024
Jingjing Xu
Wei Zhou
Zijian Yang
Eugen Beck
Ralf Schlueter
ArXivPDFHTML

Papers citing "Dynamic Encoder Size Based on Data-Driven Layer-wise Pruning for Speech Recognition"

2 / 2 papers shown
Title
Omni-sparsity DNN: Fast Sparsity Optimization for On-Device Streaming
  E2E ASR via Supernet
Omni-sparsity DNN: Fast Sparsity Optimization for On-Device Streaming E2E ASR via Supernet
Haichuan Yang
Yuan Shangguan
Dilin Wang
Meng Li
P. Chuang
Xiaohui Zhang
Ganesh Venkatesh
Ozlem Kalinli
Vikas Chandra
27
14
0
15 Oct 2021
Intermediate Loss Regularization for CTC-based Speech Recognition
Intermediate Loss Regularization for CTC-based Speech Recognition
Jaesong Lee
Shinji Watanabe
111
135
0
05 Feb 2021
1