A Backbone for Long-Horizon Robot Task Understanding

End-to-end robot learning, particularly for long-horizon tasks, often results in unpredictable outcomes and poor generalization. To address these challenges, we propose a novel Therblig-Based Backbone Framework (TBBF) as a fundamental structure to enhance interpretability, data efficiency, and generalization in robotic systems. TBBF utilizes expert demonstrations to enable therblig-level task decomposition, facilitate efficient action-object mapping, and generate adaptive trajectories for new scenarios. The approach consists of two stages: offline training and online testing. During the offline training stage, we developed the Meta-RGate SynerFusion (MGSF) network for accurate therblig segmentation across various tasks. In the online testing stage, after a one-shot demonstration of a new task is collected, our MGSF network extracts high-level knowledge, which is then encoded into the image using Action Registration (ActionREG). Additionally, Large Language Model (LLM)-Alignment Policy for Visual Correction (LAP-VC) is employed to ensure precise action registration, facilitating trajectory transfer in novel robot scenarios. Experimental results validate these methods, achieving 94.37% recall in therblig segmentation and success rates of 94.4% and 80% in real-world online robot testing for simple and complex scenarios, respectively. Supplementary material is available at:this https URL
View on arXiv@article{chen2025_2408.01334, title={ A Backbone for Long-Horizon Robot Task Understanding }, author={ Xiaoshuai Chen and Wei Chen and Dongmyoung Lee and Yukun Ge and Nicolas Rojas and Petar Kormushev }, journal={arXiv preprint arXiv:2408.01334}, year={ 2025 } }