ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2408.03350
50
6

miniCTX: Neural Theorem Proving with (Long-)Contexts

5 August 2024
Jiewen Hu
Thomas Zhu
Sean Welleck
    AIMat
ArXivPDFHTML
Abstract

Real-world formal theorem proving often depends on a wealth of context, including definitions, lemmas, comments, file structure, and other information. We introduce miniCTX, which tests a model's ability to prove formal mathematical theorems that depend on new context that is not seen during training. miniCTX contains theorems sourced from real Lean projects and textbooks, each associated with a context that can span tens of thousands of tokens. Models are tasked with proving a theorem given access to code from the theorem's repository, which contains context that is needed for the proof. As a baseline for miniCTX, we tested fine-tuning and prompting methods that condition theorem proving on preceding context. Both approaches substantially outperform traditional methods that rely solely on state information. We found that this ability to use context is not captured by previous benchmarks such as miniF2F. Alongside miniCTX, we offer ntp-toolkit for automatically extracting and annotating theorem proving data, making it easy to add new projects into miniCTX to ensure that contexts are not seen during training. miniCTX offers a challenging and realistic evaluation of neural theorem provers.

View on arXiv
@article{hu2025_2408.03350,
  title={ miniCTX: Neural Theorem Proving with (Long-)Contexts },
  author={ Jiewen Hu and Thomas Zhu and Sean Welleck },
  journal={arXiv preprint arXiv:2408.03350},
  year={ 2025 }
}
Comments on this paper