ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2408.11384
  4. Cited By
Data-Centric Machine Learning for Earth Observation: Necessary and
  Sufficient Features

Data-Centric Machine Learning for Earth Observation: Necessary and Sufficient Features

21 August 2024
Hiba Najjar
Marlon Nuske
Andreas Dengel
ArXivPDFHTML

Papers citing "Data-Centric Machine Learning for Earth Observation: Necessary and Sufficient Features"

4 / 4 papers shown
Title
On What Depends the Robustness of Multi-source Models to Missing Data in Earth Observation?
On What Depends the Robustness of Multi-source Models to Missing Data in Earth Observation?
Francisco Mena
Diego Arenas
Miro Miranda
A. Dengel
40
1
0
25 Mar 2025
Missing Data as Augmentation in the Earth Observation Domain: A Multi-View Learning Approach
Francisco Mena
Diego Arenas
A. Dengel
41
1
0
03 Jan 2025
Explainability of Sub-Field Level Crop Yield Prediction using Remote
  Sensing
Explainability of Sub-Field Level Crop Yield Prediction using Remote Sensing
Hiba Najjar
Miro Miranda
Marlon Nuske
R. Roscher
A. Dengel
25
0
0
11 Jul 2024
In the Search for Optimal Multi-view Learning Models for Crop
  Classification with Global Remote Sensing Data
In the Search for Optimal Multi-view Learning Models for Crop Classification with Global Remote Sensing Data
Francisco Mena
Diego Arenas
A. Dengel
59
2
0
25 Mar 2024
1