ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.11075
17
0

ShapeAug++: More Realistic Shape Augmentation for Event Data

17 September 2024
Katharina Bendig
René Schuster
Didier Stricker
    3DPC
ArXivPDFHTML
Abstract

The novel Dynamic Vision Sensors (DVSs) gained a great amount of attention recently as they are superior compared to RGB cameras in terms of latency, dynamic range and energy consumption. This is particularly of interest for autonomous applications since event cameras are able to alleviate motion blur and allow for night vision. One challenge in real-world autonomous settings is occlusion where foreground objects hinder the view on traffic participants in the background. The ShapeAug method addresses this problem by using simulated events resulting from objects moving on linear paths for event data augmentation. However, the shapes and movements lack complexity, making the simulation fail to resemble the behavior of objects in the real world. Therefore in this paper, we propose ShapeAug++, an extended version of ShapeAug which involves randomly generated polygons as well as curved movements. We show the superiority of our method on multiple DVS classification datasets, improving the top-1 accuracy by up to 3.7% compared to ShapeAug.

View on arXiv
Comments on this paper