ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.17383
  4. Cited By
VectorSearch: Enhancing Document Retrieval with Semantic Embeddings and
  Optimized Search

VectorSearch: Enhancing Document Retrieval with Semantic Embeddings and Optimized Search

25 September 2024
Solmaz Seyed Monir
Irene Lau
Shubing Yang
Dongfang Zhao
ArXivPDFHTML

Papers citing "VectorSearch: Enhancing Document Retrieval with Semantic Embeddings and Optimized Search"

1 / 1 papers shown
Title
Investigating Retrieval-Augmented Generation in Quranic Studies: A Study of 13 Open-Source Large Language Models
Investigating Retrieval-Augmented Generation in Quranic Studies: A Study of 13 Open-Source Large Language Models
Zahra Khalila
Arbi Haza Nasution
Winda Monika
Aytug Onan
Yohei Murakami
Yasir Bin Ismail Radi
Noor Mohammad Osmani
RALM
76
0
0
20 Mar 2025
1