Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2409.17858
Cited By
How Feature Learning Can Improve Neural Scaling Laws
26 September 2024
Blake Bordelon
Alexander B. Atanasov
C. Pehlevan
Re-assign community
ArXiv
PDF
HTML
Papers citing
"How Feature Learning Can Improve Neural Scaling Laws"
10 / 10 papers shown
Title
Corner Gradient Descent
Dmitry Yarotsky
29
0
0
16 Apr 2025
Dynamically Learning to Integrate in Recurrent Neural Networks
Blake Bordelon
Jordan Cotler
C. Pehlevan
Jacob A. Zavatone-Veth
48
2
0
24 Mar 2025
A Multi-Power Law for Loss Curve Prediction Across Learning Rate Schedules
Kairong Luo
Haodong Wen
Shengding Hu
Zhenbo Sun
Zhiyuan Liu
Maosong Sun
Kaifeng Lyu
Wenguang Chen
CLL
49
0
0
17 Mar 2025
Uncertainty Quantification From Scaling Laws in Deep Neural Networks
Ibrahim Elsharkawy
Yonatan Kahn
Benjamin Hooberman
UQCV
37
0
0
07 Mar 2025
Deep Linear Network Training Dynamics from Random Initialization: Data, Width, Depth, and Hyperparameter Transfer
Blake Bordelon
C. Pehlevan
AI4CE
51
1
0
04 Feb 2025
Loss-to-Loss Prediction: Scaling Laws for All Datasets
David Brandfonbrener
Nikhil Anand
Nikhil Vyas
Eran Malach
Sham Kakade
72
2
0
19 Nov 2024
High-dimensional Analysis of Knowledge Distillation: Weak-to-Strong Generalization and Scaling Laws
M. E. Ildiz
Halil Alperen Gozeten
Ege Onur Taga
Marco Mondelli
Samet Oymak
38
2
0
24 Oct 2024
Analyzing Neural Scaling Laws in Two-Layer Networks with Power-Law Data Spectra
Roman Worschech
B. Rosenow
31
0
0
11 Oct 2024
The Optimization Landscape of SGD Across the Feature Learning Strength
Alexander B. Atanasov
Alexandru Meterez
James B. Simon
C. Pehlevan
35
2
0
06 Oct 2024
A Generalization Bound for Nearly-Linear Networks
Eugene Golikov
16
0
0
09 Jul 2024
1