ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.02874
16
0

Real-World Cooking Robot System from Recipes Based on Food State Recognition Using Foundation Models and PDDL

3 October 2024
Naoaki Kanazawa
Kento Kawaharazuka
Yoshiki Obinata
Kei Okada
Masayuki Inaba
    LM&Ro
ArXivPDFHTML
Abstract

Although there is a growing demand for cooking behaviours as one of the expected tasks for robots, a series of cooking behaviours based on new recipe descriptions by robots in the real world has not yet been realised. In this study, we propose a robot system that integrates real-world executable robot cooking behaviour planning using the Large Language Model (LLM) and classical planning of PDDL descriptions, and food ingredient state recognition learning from a small number of data using the Vision-Language model (VLM). We succeeded in experiments in which PR2, a dual-armed wheeled robot, performed cooking from arranged new recipes in a real-world environment, and confirmed the effectiveness of the proposed system.

View on arXiv
Comments on this paper