ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.05233
  4. Cited By
SimO Loss: Anchor-Free Contrastive Loss for Fine-Grained Supervised
  Contrastive Learning

SimO Loss: Anchor-Free Contrastive Loss for Fine-Grained Supervised Contrastive Learning

7 October 2024
Taha Bouhsine
Imad El Aaroussi
Atik Faysal
Wang Huaxia
ArXiv (abs)PDFHTML

Papers citing "SimO Loss: Anchor-Free Contrastive Loss for Fine-Grained Supervised Contrastive Learning"

1 / 1 papers shown
Title
InfoNCE: Identifying the Gap Between Theory and Practice
InfoNCE: Identifying the Gap Between Theory and Practice
E. Rusak
Patrik Reizinger
Attila Juhos
Oliver Bringmann
Roland S. Zimmermann
Wieland Brendel
404
25
0
28 Jun 2024
1