Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
2410.06513
Cited By
MotionRL: Align Text-to-Motion Generation to Human Preferences with Multi-Reward Reinforcement Learning
9 October 2024
Xiaoyang Liu
Yunyao Mao
Wengang Zhou
Houqiang Li
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"MotionRL: Align Text-to-Motion Generation to Human Preferences with Multi-Reward Reinforcement Learning"
5 / 5 papers shown
ReAlign: Text-to-Motion Generation via Step-Aware Reward-Guided Alignment
Wanjiang Weng
Xiaofeng Tan
Junbo Wang
Guo-Sen Xie
Pan Zhou
Hongsong Wang
VGen
116
1
0
24 Nov 2025
No MoCap Needed: Post-Training Motion Diffusion Models with Reinforcement Learning using Only Textual Prompts
Girolamo Macaluso
Lorenzo Mandelli
Mirko Bicchierai
Stefano Berretti
Andrew D. Bagdanov
VGen
140
0
0
08 Oct 2025
A Survey of Generative Categories and Techniques in Multimodal Generative Models
Longzhen Han
Awes Mubarak
Almas Baimagambetov
Nikolaos Polatidis
Thar Baker
LRM
411
0
0
29 May 2025
ReAlign: Bilingual Text-to-Motion Generation via Step-Aware Reward-Guided Alignment
Wanjiang Weng
Xiaofeng Tan
Hongsong Wang
Pan Zhou
VGen
390
0
0
08 May 2025
Fleximo: Towards Flexible Text-to-Human Motion Video Generation
Yuhang Zhang
Yuan Zhou
Zeyu Liu
Yuxuan Cai
Qiuyue Wang
Aidong Men
Huan Yang
VGen
DiffM
277
4
0
29 Nov 2024
1
Page 1 of 1