ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.08727
  4. Cited By
Losing dimensions: Geometric memorization in generative diffusion

Losing dimensions: Geometric memorization in generative diffusion

11 October 2024
Beatrice Achilli
Enrico Ventura
Gianluigi Silvestri
Bao Pham
G. Raya
Dmitry Krotov
Carlo Lucibello
L. Ambrogioni
ArXivPDFHTML

Papers citing "Losing dimensions: Geometric memorization in generative diffusion"

3 / 3 papers shown
Title
Understanding Classifier-Free Guidance: High-Dimensional Theory and Non-Linear Generalizations
Understanding Classifier-Free Guidance: High-Dimensional Theory and Non-Linear Generalizations
Krunoslav Lehman Pavasovic
Jakob Verbeek
Giulio Biroli
Marc Mézard
59
0
0
11 Feb 2025
A Geometric Framework for Understanding Memorization in Generative Models
A Geometric Framework for Understanding Memorization in Generative Models
Brendan Leigh Ross
Hamidreza Kamkari
Tongzi Wu
Rasa Hosseinzadeh
Zhaoyan Liu
George Stein
Jesse C. Cresswell
G. Loaiza-Ganem
40
6
0
31 Oct 2024
Manifolds, Random Matrices and Spectral Gaps: The geometric phases of generative diffusion
Manifolds, Random Matrices and Spectral Gaps: The geometric phases of generative diffusion
Enrico Ventura
Beatrice Achilli
Gianluigi Silvestri
Carlo Lucibello
L. Ambrogioni
DiffM
30
5
0
08 Oct 2024
1