ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.12166
  4. Cited By
Reclaiming the Source of Programmatic Policies: Programmatic versus
  Latent Spaces

Reclaiming the Source of Programmatic Policies: Programmatic versus Latent Spaces

16 October 2024
Tales H. Carvalho
Kenneth Tjhia
Levi H. S. Lelis
ArXivPDFHTML

Papers citing "Reclaiming the Source of Programmatic Policies: Programmatic versus Latent Spaces"

3 / 3 papers shown
Title
Synthesizing Programmatic Reinforcement Learning Policies with Large Language Model Guided Search
Synthesizing Programmatic Reinforcement Learning Policies with Large Language Model Guided Search
Max Liu
Chan-Hung Yu
Wei-Hsu Lee
Cheng-Wei Hung
Yen-Chun Chen
Shao-Hua Sun
42
3
0
26 May 2024
Program Synthesis with Best-First Bottom-Up Search
Program Synthesis with Best-First Bottom-Up Search
Saqib Ameen
Levi H. S. Lelis
21
4
0
06 Oct 2023
Hierarchical Programmatic Reinforcement Learning via Learning to Compose
  Programs
Hierarchical Programmatic Reinforcement Learning via Learning to Compose Programs
Guanhui. Liu
En-Pei Hu
Pu-Jen Cheng
Hung-yi Lee
Shao-Hua Sun
66
10
0
30 Jan 2023
1